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Abstract

Let E be a compact set in C with connected complement and positive logarithmic capacity.
For any f continuous on E and analytic in the interior of E, we consider the distribution of
extreme points of the error of best uniform polynomial approximation on E. Let 4 = (n;) be a
subsequence of N such that n;,;/n;— 1. If, for neA, 4,(f)=0E denotes the set of extreme
points of the error function, we prove that there is a subsequence A’ of A such that the
distribution of any (n + 2)th Fekete point set %2 of 4,(f) tends weakly to the equilibrium
distribution on E as n— oo in A’. Furthermore, we prove a discrepancy result for the
distribution of the point sets %, if the boundary of E is smooth enough.
© 2004 Published by Elsevier Inc.
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1. Introduction

The problem we are considering started with a paper of Kadec [6]. He proved that
for any real function f'e C[—1, 1] the alternation points of the best approximation
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with respect to algebraic polynomials of degree ne N are distributed like the extreme
points of the Chebychev polynomials, at least for a subsequence. He even gave an
estimate of the discrepancy between the two distributions in terms of the degree
neN.

The theorem of Kadec has been extended to polynomial approximation on
compact sets £ < C by Blatt et al. [4]. In this case, one has to choose an appropriate
subset of the extremal point set. For a subsequence, this sequence of subsets is
distributed like the equilibrium distribution of E, the set, where the approximation
takes place.

Of course, it is natural to ask about the nature of any subsequence for which the
extreme points of the best approximation can behave badly. Lorentz proved in [11]
for the interval case that the convergence to the expected distribution may not take
place for all subsequences. This result was generalized by Krod and Saff [9] to the
complex case.

Kro6 [7] proved for 1<p< oo, feC[—1,1] that if the error function of best L/-
approximation has no zero in some subinterval (a,b) =[—1, 1] for some subsequence
(nj)jeN7 then

: Mj+1
lim sup ~—=>1.
jooo M

This was an improvement of a weaker theorem by Kro6 and Swetits [10].
In [2], this result was sharpened. Let 1<p<oo, feC[-1,1] and (m);. a
subsequence, such that

- it
lim L= = 1.
j— o I’lj

Then there exist n; +2 points in [—1,1], where the error function of the
best [P-approximation has alternating signs and the point measures t,, associated
with these points of alternation have the equilibrium distribution on [—1,1] as a
weak limit point. An analogous result for L'-approximation was proved in [3],
compare also [8].

The outline of this paper is as follows. In Section 2, we state the distribution
results of extremal point sets for complex approximation by polynomials on compact
sets EcC. In Section 3, we compare the error of best approximation on discrete
point sets of E which consists, up to a simple point, of a Fekete point set of E with

the global error on E (Lemma 2). In Lemmas 3 and 4, we derive upper bounds for

the ratio of the discrete error on {x,-}?;rol c E to the global error on E in terms of the

derivative of w,(x) = [, (x — x;) at the zeros x;,0<i<n + 1. Section 4 describes a

distribution result for the zeros of the monic polynomials w, based on the derivative
at the zeros. Section 5 provides the proof of the theorems using the auxiliary lemmas
of the previous sections.
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2. Main results

We consider a compact set £ < C with positive capacity, such that the complement
Q = C\E is connected; i.e., there is a Green function G = G on Q, which converges
to 0 quasi-everywhere on OF. It is well known that in this case

G(z) = —-U"(z) —logcap E, zeQ,

where cap E denotes the capacity of E, i = uy is the equilibrium distribution of £
supported on OF and, for unit measures v on E,

U'(z) = /log(ﬁ> dv(t)

is the logarithmic potential of v.
By

Pu(f) = poe(f)

we denote the best approximating polynomial to a function f, continuous on E and
analytic in the interior of E, with respect to 2, the set of all complex polynomials of
degree n; i.e.,

en(f) = ene(f) =1 = pa(N)llp = min[l.f = pll,

where the norm is the uniform norm on E. We denote the extremal set of best
approximation by

Aw=An(f)={zeE:|f(2) — p,(/)2)| = e S)}.
It is well known that
€n.ot, (f) = en(f)'

o/y(f) is a subset of OF, which has at least n + 2 points and can be an infinite set.
For compact M =C, denote by

Fu(M)={x1,...,x,} =M,

a Fekete point set of n points of M; i.e., a set of points in M such that
T x—xl
i#j1<ij<n

is maximal.
If B<C is a finite point set we denote by t(B) the normalized counting measure of
B, i.e., if B consists of exactly m points then 7 associates the mass 1/m to each point.
Fekete [4] in subsets 7,12 (o7, ( f)) were chosen in .7, (f) for each ne N. For these
point sets it was shown that there exists a subsequence A’ =N such that

(T w2 A(f)) = pp as n—>o0, ned, (1)

*
where “—” denotes weak™ convergence of the measures.
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In this paper, we want to characterize subsequences A <N, such that this weak™
convergence (1) holds for some subsequence A’ of A. Our main result is in the
following theorem.

Theorem 1. Assume that A = (n;);_y is a subsequence of N with
. H
lim =1,
Joe 1y
Then we can choose a subsequence A' = A such that

(T w2(An(f)) = up as n—o0, ned. (2)

Thus, if a subsequence (#;) jen Of N has the property that no asymptotically equal
distributed points can be chosen in .7, ( f) (not even for a subsequence), then it must
contain gaps; i.e.

. n;
limsup > 1.
jowjed T

For a set E that is either a Jordan curve or an arc, we can define the discrepancy of
two measures v; and v, supported on E by
D[vi — va] = sup{|(vi — v2)(J)|: J is a subarc of OF}.

For such sufficiently smooth Jordan arcs and curves it is possible to sharpen the
weak™ convergence of Theorem 1 to a discrepancy estimate between the measures

T(fnJrZ(vQ{n(f))) and UE-

Theorem 2. Let L = OF be a piecewise Dini-smooth Jordan curve with all inner angles
less than or equal to m, or let L be a piecewise Dini-smooth Jordan arc. Then

D[e(F 2 (Au([))) — uE]<c\/§ log(l +%) +%1°g (ﬁ) ®

for all 1 <k<n, where C is a positive constant independent of f, n and k.

Now, Theorem 2 allows us to formulate the asymptotic result in Theorem 1 in
terms of discrepancy.
Theorem 3. Let E be as in Theorem 2 and let A = (n;); . a subsequence of N with

. Nyl
lim L= = 1.
Jow n;

Then there exists a subsequence A' S A, such that

log 7,
D[e(F wysa(l (/) — nel < C W @
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Sor all nje A', where

. n
V=
il — 1y

and C is a positive constant, independent of f.

Note that by the hypothesis of Theorem 3 lim;_, ,,7;, = 0.

Remark. In all theorems above the convergence results hold also for a Fekete point
set

F na-1(An(f))
instead of F ,,,2(o/,(f)) where the number keN is fixed.

3. Interrelations between global and discrete approximations

One of our tools in the proofs is the relation between the norm of polynomials on
compact sets and their discrete norms on Fekete point sets. We use a lemma of
Walsh.

Lemma 1. For any compact set M = C with at least n + 1 points choose a Fekete point
set F 1 (M) consisting of n+ 1 points. Then for any polynomial pe 2,, we have

1l < (4 Dllpll 7, -

For the proof see Section 7.9, Lemma, p. 177, of Walsh [13].

With this lemma we are able to obtain lower bounds for the minimal error in
polynomial approximation on special discrete sets in terms of the global minimal
error on compact sets M < C.

Lemma 2. Let g be continuous on the compact set M < C consisting of more than m
points where m>=n+ 2. Then, for any Fekete point set F ,,_1(M) there exists a point
Xy€M such that

|

€n.A (g) ?m Cn,M(g)7

where
A=F,(M)u{x,}.

Of course, one cannot choose one and the same A for all g. However, only one
point in A depends on g while the other points depend on M only.

Proof. Choose a Fekete point set F = #,,_1(M) in M. Then define for each xe M
€(X) = en,Fu{x}(g)'
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It is easy to see that e(x) depends continuously on x. Thus there is an x, € M, which
maximizes e(x). We set

A=Fu{x,}.
Let us denote by p, € 2, the polynomial of best approximation to g on Fu{x}, i.e.,
e(x) =llg _px”Fu{x}'
Then for all ze M, using the previous lemma for polynomials in £,,_,,
19(6) = px, (D1< |9 (1) = pi(0)| + |pi(2) = P, (1))
<e(r) + (m—=Dllp: = px, Il

<e(t) + (m—1)(llp: — gllp +1lg = px,llF)
<e(t) + (m—1)(e(?) + e(xy))
< (2m = De(xy).

Hence,
ennr(9) <9 — P, |l pr < (2m = De(xy).
This finishes the proof. [

On the other hand, we also need lower bounds for the discrete minimal error on
point sets of n + 2 points. For that reason, we define for r>1 the level line

I ={zeQ:G(z) =logr}
of Green’s function G(z). Moreover, for r>1 let
E, =Eu{zeC:G(z)<logr}.
Then there exists rz>1 such that I', is an analytic and simple closed curve for all

r>rg.
In the following lemmas we fix n + 2 (pairwise disjoint) points

X0; X1y oy Xnp1 EE
and define
n+1
wy(x) == (x —x;)
i=0

Lemma 3. Let g be a function analytic on E,, g¢ P, where
r>max(rg,2diam E/cap E).

Then there exists a positive constant C>0, depending only on E, such that

e nfr
-1} (9) <C g2 —7 - min [CACHIE
enk,(9) (rcap E)" 0<i<ntl
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where
o = 62 diam E/cap E

and diam E denotes the diameter of E.

Proof. We denote by P,(g) € 2, the interpolating polynomial of degree at most n to
g in x1,...,X,+1. Then

entxo ..o} (D <N = Pul@l iz, vy
=1g(x0) — Pn(g)(x0)|- (5)

By the Hermite formula we have for any polynomial ¢g,e 2,

9(x0) — Palg)(x0) == / Ou(x0)g(z)

" 27 Jr, @a(2)(z — xo)

1 ame—aE ,
27 Jr, @u(z)(z — x0) @z, (6)

)

where
Du(2) = (2 = x1) oo - (2 = Xnp1)-
Note that
Bu(Xo) = @, (x0)-
Inserting the best approximation g, = p}, 1 (9) to g on E, into (6), we get by (5)

Go C()il X0)|€nE\9 length I,
e”~{xo~-~-7xﬂ+|}(g)< | ( )| 5n+(2 ) ( ) (7)

with a constant Cy>0 and
o, = dist(I'y, E).

Since
Ure(z) = [ loglz ~ ] dus(t)
E

we obtain for zeT',
—U":(z) = logr + log cap E<log(d, + diam E)

or
rcap E<J, + diam E.
Hence,
. diam £
o,=rcap E —diam E = rcapE(l _dam )
rcap £

and for r>2diam E/cap E
Sy =rap/" cap E. (8)
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The complement of the disc {z:|z|<r} is mapped to the exterior of I', by the
Riemann mapping with

@(c0) =0, @(wn)=capE.

Using the integral formula for curve length, we get

2n
length(I",) :/ i@(e”) dt< Cir 9)
0

dt

for all r>rg with some fixed constant C}, independent of r.
Inserting (8) and (9) into (7) we obtain

Cola, (x0)len s, (9)etyl"

)n+1

€n {x0,....Xns <
AX054es l}(g) (rcapE

with some constant C,, independent of r and n.
Of course, we can repeat the same proof with x;, i=1,...,n+ 1, instead of Xx.
This yields the lemma. [

Lemma 4. Let neN and xy, ..., x,11 €E. For all | <k<n and P, € P, \?, we have

en,{xo,...,xn+1}(Pn+k)<C(@)k 1
(

min |w:1(xi)|7

en(Puik) k cap E)”+1 0<i<n+l

where B and C are positive constants depending only on the geometry of E.
Proof. We apply the previous lemma to g = P,.x. By the Bernstein—Walsh
inequality, we have

En,E, (Pn+k) < ‘|Pn+k - PZ(P11+k)||E,_ <rn+ken(Pn+k)~ (10)

Here, p}(P,.x) refers to the best approximation of P, ; on E.
Next we choose

__ nlog(on)
n = P
then we get
.= S diam E - diam E

k capE ~ “capE
Moreover, we have

nfry _ _k/logog _ k
o = ol er.

Finally, we set
r:= max(ry, rg).
Then

anE/rSanE/rn <ek
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and

nlogag
)
diam E
cap E >
Inserting this together with (10) into the inequality of Lemma 3, we finally obtain
Lemma 4 with
f = max(rg,2ediam E/cap E). O

r< max <rE,

< max <rE,2n

4. Weak™ convergence of discrete point sets

In Lemma 3 resp. Lemma 4 we have obtained lower bounds for the expression

! (. n+l
Lxlﬂp where w,(x) = H (x — x;).
0<igsn+l (Cap E)n+ -0

Such lower bounds have been used by Hiising [5], and Blatt and Andrievskii [1] in the

complex plane to derive discrepancy results of the difference of the measure u; and
the normalized counting measure of the point set {x;}/,.
But if one is only interested in weak™ convergence the following lemma is very

useful.

Lemma 5. Let
on(z) = (z—=X12) * oev - (2 — Xnp)
be a sequence of monic polynomials such that all zeros x;; are on OF, defined for
neA<N with
1/n

liminf min [“aCn) 7
n—o oo lsisn  capkE

neAd

=1

Then 1, converges weakly to ug as ne A— oo, where t, = t,(w,) is the normalized zero
counting measure of .

Proof. We may assume that xj,,...,x,, are pairwise disjoint. Interpolating the
polynomial 1, we get for x¢ E
1= zn: SR Onlx)
— ), (Xin) (X — Xin)
Thus

1
L . oo
|, (x)] /ndlst(x, E) min | (xi)]-
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By our hypothesis, we get

liminf |w,(x)|"">cap E (11)
n— oo

neAdA

for all x¢ E. Now let  be any weak limit point of the sequence of measures (1,),. 4-
Then

1
—log |oy(x)| = ~U™ (x),
and therefore

lim llog |wn(x)] = =U*(x).
n—-oo N
ned
for all x¢ E. From (11), we get
U'(x)< —logcap E, x¢E.

Now, U® — U*s is a harmonic function in Q = C\E which has the value 0 at the point

oo. Since UH(z) = —logcap E quasi-everywhere on E,
lim sup(U*(x) — U*(x)) <0
x—-(

for quasi-every {€0Q = OE. By the generalized maximum principle, U* = U*£ on Q,
and 7 is supported in OF. It is known that this implies 7 = py. O

Note, that the lim inf inferior in Lemma 5 can never be larger than 1 [12, Theorem
I11. 1.7].
5. Proofs of the theorems
We are now in position to prove the theorems.
Proof of Theorem 1. Since the telescoping product
ﬁ e"j+1 (f)
j:1 e"/(f)
converges to 0, the series

> (o)

=1

must diverge, and we get for a subsequence Ag< N

Cnia(f) — e,,/.(f) 11 .
S>> jey. 12
) PR (12)
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Now, we want to apply Lemma 4 with n = n; and k = nj;1 — n; and
Puik = qj =Py, — Py, €Dy
We need a subset of n; + 2 points of .oZ,, ( f), an estimate from below for the minimal

error of P, on this subset, and an estimate from above for the global error on E.
Clearly

en (47) <P, (S) = oy (Dl s en () + en. () <2e,(f) (13)

which provides the needed estimate from above.
To obtain an estimate from below we use

enty (1)(4) = Enoct, (1) Py, ()
> €yt () — e ()
= e (f) = en (1) (14)
If the set .7, ( /) consists of more than ; + 2 points then we have to reduce the set

</, (f) to n;+ 2 points. We arrange this by applying Lemma 2 twice. With m =
n; + 3 we get a point Z;€ 4, (f) such that

22’1]1? (en/(f) - enj+l(f))

en.r(4))
with
F= 'gynﬂrz(An;(f))U{Z;}
With m = n; + 2, we get a point z;e F such that
1

en.89)> 3y 55 @)~ na () (15)
where

By = {x0)s -y X1} = F w1 (F) o {z;}-
Defining

w;j(x) = (x — x04) - (x — xanrl_j)
we obtain with (12)—(15) for je A, that
en,5,(4)) ZQ
en(q;) ~ mf’
where C) is a positive constant, independent of n and f. Hence, by Lemma 4
|} (xi )] - C(nj+1 - nj)”f“"’

0<i<m+1 (capE)nf+2/_ ﬂl’lj

~ (16)

with some constant C>0.
In the case that .7, (f) has exactly n; + 2 points, let

Bj = JZ/nj(f) = {X()J', ...,xnj+1J}.
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Using (12)—(14) we get

en.5,()) 2222
en(q)) n;
with some constant C, >0. Therefore, again by Lemma 4 we obtain inequality (16).
Now we can apply Lemma 5. We have to show that the n;th root of the right-hand
side of (16) tends to 1. However, by the assumptions of Theorem 1

R

o
'
nj

-0 asj—o

and thus
(0j/B)"—>1 asj— 0.
Therefore,
1/(nj+2)
o (xi) ]
liminf min Jeojxi) | 7
o oo O0<ismtl cap E
J€Ao
and, by Lemma 5, the normalized counting measures 7(B;) converge weakly to uy as
j— oo, jedy.
Since the sets
BJ = {XOJv ceey xnj+1,j}7
and the sets

F 2 (A (1)

each have at least n; 4 1 points in common, we get the same distribution for both

sequences of sets.
This finishes the proof of Theorem 1. [

Proof of Theorem 2. We apply Lemma 4 with P,x =p; ,(f). Using the same
reasoning as in the proof of Theorem 1, we know that there exist n+ | points
Xi€F pia(y(f)), I<i<n+ 1, and an additional point xge.o7,(f) such that

(@)l o enlf) = enin(f) ( k )k

0<i<ntl (cap E)Hz/ U e (f) pn

with some positive constants C; and § depending on E only.
Now, we apply the discrepancy theorem in [1, Theorem 4.15]. If
|, (xi)] 1

>—, n<d,<e’
o<isntl (cap E)"2 A,
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then this theorem states that there is a positive constant ¢ depending on E only such

that
log A
Dle, — ] <oy |2,

where 1, = t(w,) is the normalized zero counting measure of w,,.
For =1 we use

%<1+%<(1+£)ﬁ.

If p<1, we just replace it by = 1.
Hence, inequality (3) is a direct consequence. [

Proof of Theorem 3. Let
k=np —ny, n=n.

We choose again a subsequence 49 <N such that (12) holds. Then
A= {n;:jeAy}

satisfies inequality (4) of Theorem 3. [

Inspecting the proofs of the theorems, the final remark in Section 2 is quite
obvious. Moreover, it turns out that the proofs are even simpler if k>1 in
F nio—i (o2 n(f)) since it is not necessary to apply Lemma 4 twice.
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