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Abstract

Let E be a compact set in C with connected complement and positive logarithmic capacity.

For any f continuous on E and analytic in the interior of E; we consider the distribution of

extreme points of the error of best uniform polynomial approximation on E: Let L ¼ ðnjÞ be a

subsequence of N such that njþ1=nj-1: If, for nAL; Anð f ÞDqE denotes the set of extreme

points of the error function, we prove that there is a subsequence L0 of L such that the

distribution of any ðn þ 2Þth Fekete point set Fnþ2 of Anð f Þ tends weakly to the equilibrium

distribution on E as n-N in L0: Furthermore, we prove a discrepancy result for the

distribution of the point sets Fnþ2 if the boundary of E is smooth enough.

r 2004 Published by Elsevier Inc.
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1. Introduction

The problem we are considering started with a paper of Kadec [6]. He proved that
for any real function fAC½�1; 1	 the alternation points of the best approximation
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with respect to algebraic polynomials of degree nAN are distributed like the extreme
points of the Chebychev polynomials, at least for a subsequence. He even gave an
estimate of the discrepancy between the two distributions in terms of the degree
nAN:

The theorem of Kadec has been extended to polynomial approximation on
compact sets EDC by Blatt et al. [4]. In this case, one has to choose an appropriate
subset of the extremal point set. For a subsequence, this sequence of subsets is
distributed like the equilibrium distribution of E; the set, where the approximation
takes place.

Of course, it is natural to ask about the nature of any subsequence for which the
extreme points of the best approximation can behave badly. Lorentz proved in [11]
for the interval case that the convergence to the expected distribution may not take
place for all subsequences. This result was generalized by Kroó and Saff [9] to the
complex case.

Kroó [7] proved for 1oppN; fAC½�1; 1	 that if the error function of best Lp-
approximation has no zero in some subinterval ða; bÞC½�1; 1	 for some subsequence
ðnjÞjAN; then

lim sup
j-N

njþ1

nj

41:

This was an improvement of a weaker theorem by Kroó and Swetits [10].
In [2], this result was sharpened. Let 1oppN; fAC½�1; 1	 and ðnjÞjAN a

subsequence, such that

lim
j-N

njþ1

nj

¼ 1:

Then there exist nj þ 2 points in ½�1; 1	; where the error function of the

best Lp-approximation has alternating signs and the point measures tnj
associated

with these points of alternation have the equilibrium distribution on ½�1; 1	 as a

weak limit point. An analogous result for L1-approximation was proved in [3],
compare also [8].

The outline of this paper is as follows. In Section 2, we state the distribution
results of extremal point sets for complex approximation by polynomials on compact
sets ECC: In Section 3, we compare the error of best approximation on discrete
point sets of E which consists, up to a simple point, of a Fekete point set of E with
the global error on E (Lemma 2). In Lemmas 3 and 4, we derive upper bounds for

the ratio of the discrete error on fxignþ1
i¼0 CE to the global error on E in terms of the

derivative of onðxÞ ¼
Qnþ1

i¼0 ðx � xiÞ at the zeros xi; 0pipn þ 1: Section 4 describes a

distribution result for the zeros of the monic polynomials on based on the derivative
at the zeros. Section 5 provides the proof of the theorems using the auxiliary lemmas
of the previous sections.
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2. Main results

We consider a compact set ECC with positive capacity, such that the complement

O :¼ %C\E is connected; i.e., there is a Green function G ¼ GE on O; which converges
to 0 quasi-everywhere on qE: It is well known that in this case

GðzÞ ¼ �UmðzÞ � log cap E; zAO;

where cap E denotes the capacity of E; m ¼ mE is the equilibrium distribution of E

supported on qE and, for unit measures n on E;

U nðzÞ ¼
Z

log
1

jz � tj

� �
dnðtÞ

is the logarithmic potential of n:
By

p�nð f Þ ¼ p�
n;Eð f Þ

we denote the best approximating polynomial to a function f ; continuous on E and
analytic in the interior of E; with respect to Pn; the set of all complex polynomials of
degree n; i.e.,

enð f Þ ¼ en;Eð f Þ :¼ jj f � p�
nð f ÞjjE ¼ min

pAPn

jj f � pjjE ;

where the norm is the uniform norm on E: We denote the extremal set of best
approximation by

An ¼ Anð f Þ ¼ fzAE : j f ðzÞ � p�
nð f ÞðzÞj ¼ enð f Þg:

It is well known that

en;An
ð f Þ ¼ enð f Þ:

Anð f Þ is a subset of qE; which has at least n þ 2 points and can be an infinite set.
For compact MCC; denote by

FnðMÞ ¼ fx1;y; xngDM;

a Fekete point set of n points of M; i.e., a set of points in M such thatY
iaj;1pi;jpn

jxi � xjj

is maximal.
If BCC is a finite point set we denote by tðBÞ the normalized counting measure of

B; i.e., if B consists of exactly m points then t associates the mass 1=m to each point.
Fekete [4] in subsets Fnþ2ðAnð f ÞÞ were chosen in Anð f Þ for each nAN: For these

point sets it was shown that there exists a subsequence L0CN such that

tðFnþ2ðAnð f ÞÞÞ!� mE as n-N; nAL0; ð1Þ

where ‘‘!� ’’ denotes weak� convergence of the measures.
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In this paper, we want to characterize subsequences LDN; such that this weak�

convergence (1) holds for some subsequence L0 of L: Our main result is in the
following theorem.

Theorem 1. Assume that L ¼ ðnjÞjAN is a subsequence of N with

lim
j-N

njþ1

nj

¼ 1:

Then we can choose a subsequence L0DL such that

tðFnþ2ðAnð f ÞÞÞ!� mE as n-N; nAL0: ð2Þ

Thus, if a subsequence ðnjÞjAN of N has the property that no asymptotically equal

distributed points can be chosen in Anj
ð f Þ (not even for a subsequence), then it must

contain gaps; i.e.

lim sup
j-N;jAL

njþ1

nj

41:

For a set E that is either a Jordan curve or an arc, we can define the discrepancy of
two measures n1 and n2 supported on E by

D½n1 � n2	 ¼ supfjðn1 � n2ÞðJÞj : J is a subarc of qEg:

For such sufficiently smooth Jordan arcs and curves it is possible to sharpen the
weak� convergence of Theorem 1 to a discrepancy estimate between the measures
tðFnþ2ðAnð f ÞÞÞ and mE :

Theorem 2. Let L ¼ qE be a piecewise Dini-smooth Jordan curve with all inner angles

less than or equal to p; or let L be a piecewise Dini-smooth Jordan arc. Then

D½tðFnþ2ðAnð f ÞÞÞ � mE 	pC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

n
log 1 þ n

k

� �
þ 1

n
log

enð f Þ
enð f Þ � enþkð f Þ

� �s
ð3Þ

for all 1pkpn; where C is a positive constant independent of f ; n and k:

Now, Theorem 2 allows us to formulate the asymptotic result in Theorem 1 in
terms of discrepancy.

Theorem 3. Let E be as in Theorem 2 and let L ¼ ðnjÞjAN a subsequence of N with

lim
j-N

njþ1

nj

¼ 1:

Then there exists a subsequence L0DL; such that

D½tðFnjþ2ðAnj
ð f ÞÞÞ � mE 	pC

ffiffiffiffiffiffiffiffiffiffiffi
log gj

gj

s
ð4Þ
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for all njAL0; where

gj ¼
nj

njþ1 � nj

and C is a positive constant, independent of f :

Note that by the hypothesis of Theorem 3 limj-Ngj ¼ N:

Remark. In all theorems above the convergence results hold also for a Fekete point
set

Fnþ2�kðAnð f ÞÞ

instead of Fnþ2ðAnð f ÞÞ where the number kAN is fixed.

3. Interrelations between global and discrete approximations

One of our tools in the proofs is the relation between the norm of polynomials on
compact sets and their discrete norms on Fekete point sets. We use a lemma of
Walsh.

Lemma 1. For any compact set MCC with at least n þ 1 points choose a Fekete point

set Fnþ1ðMÞ consisting of n þ 1 points. Then for any polynomial pAPn; we have

jjpjjMpðn þ 1ÞjjpjjFnþ1ðMÞ:

For the proof see Section 7.9, Lemma, p. 177, of Walsh [13].
With this lemma we are able to obtain lower bounds for the minimal error in

polynomial approximation on special discrete sets in terms of the global minimal
error on compact sets MCC:

Lemma 2. Let g be continuous on the compact set MCC consisting of more than m

points where mXn þ 2: Then, for any Fekete point set Fm�1ðMÞ there exists a point

xgAM such that

en;AðgÞX
1

2m � 1
en;MðgÞ;

where

A ¼ Fm�1ðMÞ,fxgg:

Of course, one cannot choose one and the same A for all g: However, only one
point in A depends on g while the other points depend on M only.

Proof. Choose a Fekete point set F ¼ Fm�1ðMÞ in M: Then define for each xAM

eðxÞ ¼ en;F,fxgðgÞ:
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It is easy to see that eðxÞ depends continuously on x: Thus there is an xgAM; which

maximizes eðxÞ: We set

A ¼ F,fxgg:
Let us denote by pxAPn the polynomial of best approximation to g on F,fxg; i.e.,

eðxÞ ¼ jjg � pxjjF,fxg:

Then for all tAM; using the previous lemma for polynomials in Pm�2;

jgðtÞ � pxg
ðtÞjp jgðtÞ � ptðtÞj þ jptðtÞ � pxg

ðtÞj

p eðtÞ þ ðm � 1Þjjpt � pxg
jjF

p eðtÞ þ ðm � 1Þðjjpt � gjjF þ jjg � pxg
jjF Þ

p eðtÞ þ ðm � 1ÞðeðtÞ þ eðxgÞÞ

p ð2m � 1ÞeðxgÞ:
Hence,

en;MðgÞpjjg � pxg
jjMpð2m � 1ÞeðxgÞ:

This finishes the proof. &

On the other hand, we also need lower bounds for the discrete minimal error on
point sets of n þ 2 points. For that reason, we define for r41 the level line

Gr :¼ fzAO : GðzÞ ¼ log rg
of Green’s function GðzÞ: Moreover, for r41 let

Er ¼ E,fzAC : GðzÞplog rg:
Then there exists rE41 such that Gr is an analytic and simple closed curve for all
r4rE :

In the following lemmas we fix n þ 2 (pairwise disjoint) points

x0; x1;y; xnþ1AE

and define

onðxÞ :¼
Ynþ1

i¼0

ðx � xiÞ:

Lemma 3. Let g be a function analytic on Er; gePn; where

r4maxðrE ; 2 diam E=cap EÞ:
Then there exists a positive constant C40; depending only on E; such that

en;fx0;y;xnþ1gðgÞ
en;Er

ðgÞ pC
an=r

E

ðr cap EÞnþ1
min

0pipnþ1
jo0

nðxiÞj;
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where

aE ¼ e2 diam E=cap E

and diam E denotes the diameter of E:

Proof. We denote by PnðgÞAPn the interpolating polynomial of degree at most n to
g in x1;y; xnþ1: Then

en;fx0;y;xnþ1gðgÞp jjg � PnðgÞjjfx0;y;xnþ1g

¼ jgðx0Þ � PnðgÞðx0Þj: ð5Þ

By the Hermite formula we have for any polynomial qnAPn

gðx0Þ � PnðgÞðx0Þ ¼
1

2pi

Z
Gr

*onðx0ÞgðzÞ
*onðzÞðz � x0Þ

dz;

¼ 1

2pi

Z
Gr

*onðx0Þðg � qnÞðzÞ
*onðzÞðz � x0Þ

dz; ð6Þ

where

*onðzÞ ¼ ðz � x1Þ �y � ðz � xnþ1Þ:

Note that

*onðx0Þ ¼ o0
nðx0Þ:

Inserting the best approximation qn ¼ p�
n;Er

ðgÞ to g on Er into (6), we get by (5)

en;fx0;y;xnþ1gðgÞp
C0jo0

nðx0Þjen;Er
ðgÞlengthðGrÞ

dnþ2
r

ð7Þ

with a constant C040 and

dr ¼ distðGr;EÞ:

Since

UmE ðzÞ ¼ �
Z

E

log jz � tj dmEðtÞ

we obtain for zAGr

�UmE ðzÞ ¼ log r þ log cap Eplogðdr þ diam EÞ

or

r cap Epdr þ diam E:

Hence,

drXr cap E � diam E ¼ r cap E 1 � diam E

r cap E

� �

and for rX2 diam E=cap E

drXra�1=r
E cap E: ð8Þ
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The complement of the disc fz : jzjprg is mapped to the exterior of Gr by the
Riemann mapping with

FðNÞ ¼ N; F0ðNÞ ¼ cap E:

Using the integral formula for curve length, we get

lengthðGrÞ ¼
Z 2p

0

d

dt
FðeitÞ










 dtpC1r ð9Þ

for all r4rE with some fixed constant C0
1; independent of r:

Inserting (8) and (9) into (7) we obtain

en;fx0;y;xnþ1gðgÞp
C2jo0

nðx0Þjen;Er
ðgÞan=r

E

ðr cap EÞnþ1

with some constant C2; independent of r and n:
Of course, we can repeat the same proof with xi; i ¼ 1;y; n þ 1; instead of x0:

This yields the lemma. &

Lemma 4. Let nAN and x0;y; xnþ1AE: For all 1pkpn and PnþkAPnþk\Pn we have

en;fx0;y;xnþ1gðPnþkÞ
enðPnþkÞ

pC
bn

k

� �k
1

ðcap EÞnþ1
min

0pipnþ1
jo0

nðxiÞj;

where b and C are positive constants depending only on the geometry of E:

Proof. We apply the previous lemma to g ¼ Pnþk: By the Bernstein–Walsh
inequality, we have

en;Er
ðPnþkÞpjjPnþk � p�

nðPnþkÞjjEr
prnþkenðPnþkÞ: ð10Þ

Here, p�
nðPnþkÞ refers to the best approximation of Pnþk on E:

Next we choose

rn ¼ n logðaEÞ
k

;

then we get

rn ¼ 2
n

k

diam E

cap E
X2

diam E

cap E
:

Moreover, we have

an=rn

E ¼ ak=log aE

E ¼ ek:

Finally, we set

r :¼ maxðrn; rEÞ:

Then

an=r
E pan=rn

E pek
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and

rpmax rE ;
n log aE

k

� �

pmax rE ; 2n
diam E

cap E

� �
:

Inserting this together with (10) into the inequality of Lemma 3, we finally obtain
Lemma 4 with

b ¼ maxðrE ; 2e diam E=cap EÞ: &

4. Weak� convergence of discrete point sets

In Lemma 3 resp. Lemma 4 we have obtained lower bounds for the expression

min
0pipnþ1

jo0
nðxiÞj

ðcap EÞnþ1
; where onðxÞ ¼

Ynþ1

i¼0

ðx � xiÞ:

Such lower bounds have been used by Hüsing [5], and Blatt and Andrievskii [1] in the
complex plane to derive discrepancy results of the difference of the measure mE and

the normalized counting measure of the point set fxignþ1
i¼0 :

But if one is only interested in weak� convergence the following lemma is very
useful.

Lemma 5. Let

onðzÞ ¼ ðz � x1;nÞ �y � ðz � xn;nÞ
be a sequence of monic polynomials such that all zeros xi;j are on qE; defined for

nALCN with

lim inf
n-N

nAL

min
1pipn

jo0
nðxi;nÞj1=n

cap E
X1:

Then tn converges weakly to mE as nAL-N; where tn ¼ tnðonÞ is the normalized zero

counting measure of on:

Proof. We may assume that x1;n;y; xn;n are pairwise disjoint. Interpolating the

polynomial 1, we get for xeE

1 ¼
Xn

i¼1

onðxÞ
o0

nðxi;nÞðx � xi;nÞ
:

Thus

jonðxÞjX
1

n
distðx;EÞ min

1pipn
jo0

nðxi;nÞj:
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By our hypothesis, we get

lim inf
n-N

nAL

jonðxÞj1=n
Xcap E ð11Þ

for all xeE: Now let t be any weak limit point of the sequence of measures ðtnÞnAL:

Then

1

n
log jonðxÞj ¼ �U tnðxÞ;

and therefore

lim
n-N

nAL

1

n
log jonðxÞj ¼ �U tðxÞ:

for all xeE: From (11), we get

U tðxÞp� log cap E; xeE:

Now, U t � UmE is a harmonic function in O ¼ C\E which has the value 0 at the point
N: Since UmE ðzÞ ¼ �log cap E quasi-everywhere on E;

lim sup
x-z

ðU tðxÞ � UmE ðxÞÞp0

for quasi-every zAqO ¼ qE: By the generalized maximum principle, U t ¼ UmE on O;
and t is supported in qE: It is known that this implies t ¼ mE : &

Note, that the lim inf inferior in Lemma 5 can never be larger than 1 [12, Theorem
III. 1.7].

5. Proofs of the theorems

We are now in position to prove the theorems.

Proof of Theorem 1. Since the telescoping productYN
j¼1

enjþ1
ð f Þ

enj
ð f Þ

converges to 0, the seriesXN
j¼1

enjþ1
ð f Þ

enj
ð f Þ � 1

� �

must diverge, and we get for a subsequence L0CN

enjþ1ð f Þ � enj
ð f Þ

enj
ð f Þ X

1

j2
X

1

n2
j

; jAL0: ð12Þ
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Now, we want to apply Lemma 4 with n ¼ nj and k ¼ njþ1 � nj and

Pnþk :¼ qj ¼ p�
nj
� p�

njþ1
APnjþ1

:

We need a subset of nj þ 2 points of Anj
ð f Þ; an estimate from below for the minimal

error of Pnþk on this subset, and an estimate from above for the global error on E:
Clearly

enj
ðqjÞpjjp�

nj
ð f Þ � p�

njþ1
ð f ÞjjEpenj

ð f Þ þ enjþ1
ð f Þp2enj

ð f Þ ð13Þ

which provides the needed estimate from above.
To obtain an estimate from below we use

enj ;Anj
ð f ÞðqjÞ ¼ enj ;Anj

ð f Þðp�
njþ1

ð f ÞÞ

X enj ;Anj
ð f Þð f Þ � enjþ1

ð f Þ

¼ enj
ð f Þ � enjþ1

ð f Þ: ð14Þ

If the set Anj
ð f Þ consists of more than nj þ 2 points then we have to reduce the set

Anj
ð f Þ to nj þ 2 points. We arrange this by applying Lemma 2 twice. With m ¼

nj þ 3 we get a point z̃jAAnj
ð f Þ such that

enj ;F ðqjÞX
1

2nj þ 5
ðenj

ð f Þ � enjþ1
ð f ÞÞ

with

F ¼ Fnjþ2ðAnj
ð f ÞÞ,fz̃jg:

With m ¼ nj þ 2; we get a point zjAF such that

enj ;Bj
ðqjÞX

1

ð2nj þ 3Þð2nj þ 5Þ ðenj
ð f Þ � enjþ1

ð f ÞÞ; ð15Þ

where

Bj :¼ fx0;j;y; xnjþ1;jg ¼ Fnjþ1ðFÞ,fzjg:
Defining

ojðxÞ ¼ ðx � x0;jÞ?ðx � xnjþ1;jÞ
we obtain with (12)–(15) for jAL0 that

enj ;Bj
ðqjÞ

enðqjÞ
X

C1

n4
j

;

where C1 is a positive constant, independent of n and f : Hence, by Lemma 4

min
0pipnjþ1

jo0
jðxi;jÞj

ðcap EÞnjþ2
X

C

n4
j

njþ1 � nj

bnj

� �njþ1�nj

ð16Þ

with some constant C40:
In the case that Anj

ð f Þ has exactly nj þ 2 points, let

Bj :¼ Anj
ð f Þ ¼ fx0;j;y; xnjþ1;jg:
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Using (12)–(14) we get

enj ;Bj
ðqjÞ

enðqjÞ
X

C2

n2
j

with some constant C240: Therefore, again by Lemma 4 we obtain inequality (16).
Now we can apply Lemma 5. We have to show that the njth root of the right-hand

side of (16) tends to 1. However, by the assumptions of Theorem 1

aj ¼
njþ1 � nj

nj

-0 as j-N

and thus

ðaj=bÞaj-1 as j-N:

Therefore,

lim inf
j-N

jAL0

min
0pipnjþ1

jo0
jðxi;jÞj1=ðnjþ2Þ

cap E
X1

and, by Lemma 5, the normalized counting measures tðBjÞ converge weakly to mE as

j-N; jAL0:
Since the sets

Bj ¼ fx0;j ;y; xnjþ1;jg;

and the sets

Fnjþ2ðAnj
ð f ÞÞ

each have at least nj þ 1 points in common, we get the same distribution for both

sequences of sets.
This finishes the proof of Theorem 1. &

Proof of Theorem 2. We apply Lemma 4 with Pnþk ¼ p�
nþkð f Þ: Using the same

reasoning as in the proof of Theorem 1, we know that there exist n þ 1 points
xiAFnþ2ðAnð f ÞÞ; 1pipn þ 1; and an additional point x0AAnð f Þ such that

min
0pipnþ1

jo0
nðxiÞj

ðcap EÞnþ2
XC1

enð f Þ � enþkð f Þ
n2enð f Þ

k

bn

� �k

;

with some positive constants C1 and b depending on E only.
Now, we apply the discrepancy theorem in [1, Theorem 4.15]. If

min
0pipnþ1

jo0
nðxiÞj

ðcap EÞnþ2
X

1

An

; npAnoen;

ARTICLE IN PRESS
H.-P. Blatt et al. / Journal of Approximation Theory 126 (2004) 157–170168



then this theorem states that there is a positive constant c depending on E only such
that

D½tn � mE 	pc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log An

n

r
;

where tn ¼ tðonÞ is the normalized zero counting measure of on:
For bX1 we use

bn

k
p1 þ bn

k
p 1 þ n

k

� �b
:

If bo1; we just replace it by b ¼ 1:
Hence, inequality (3) is a direct consequence. &

Proof of Theorem 3. Let

k ¼ njþ1 � nj ; n ¼ nj:

We choose again a subsequence L0DN such that (12) holds. Then

L0 :¼ fnj : jAL0g

satisfies inequality (4) of Theorem 3. &

Inspecting the proofs of the theorems, the final remark in Section 2 is quite
obvious. Moreover, it turns out that the proofs are even simpler if kX1 in
Fnþ2�kðAnð f ÞÞ since it is not necessary to apply Lemma 4 twice.
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